
TheorieLearn:
Autograded Resources for Theoretical Computer Science

SIIP Implementation and Exploration Project, 2nd Year Renewal

Jeff Erickson, Carl Evans, Yael Gertner, Brad Solomon
Department of Computer Science
https://theorielearn.github.io

2023–24 Highlights

● In the 2023-24 academic year alone, our resources (not including contributions to the main
PrairieLearn platform) were used by over 4500 Illinois students in CS 173, CS 225, CS 277, both
sections of CS/ECE 374, CS 401, and CS 403.

● Our resources are also being used in theoretical CS courses at Utah State and UC Irvine.
● We published two research papers, and two ongoing research projects are slated for submission to

SIGCSE in August.
● Preliminary data analysis shows positive correlations between engagement with our PrairieLearn

resources and improved exam performance in CS 374.

Progress in 2023–24

Thanks to generous support from the SIIP program and the Department of Computer Science, we made
significant progress on several different fronts during the 2023–24 academic year, including several new guided
problem sets, progress on several new question types and interactive elements (mostly aimed at CS 225),
project-supported computer science research, and broader publicity and feedback. We have contributed
exercises to other classes at Illinois that are not formal participants in our project; elements, bug fixes, and
feature requests to the main PrairieLearn codebase; and significant updates to other open-source projects. In
the 2023-24 academic year alone, our course-specific resources have been used by more than 4500 students at
Illinois, as well as an unknown number of students at two other universities.

Assessment of theoretical content in CS 225

One of our goals for this year was to develop summative assessment exercises for CS 225, the sophomore-level
data structures class. Progress on this front has been slower than expected, primarily because of the difficulty
of balancing the open-endedness of most theory content with the limited scope of autograding. Nevertheless,
our efforts have had an effect on the pedagogy of CS 225. In Spring 2023, instructor Carl Evans included at least
onemanually-graded theoretical question in each of the biweekly CS 225 examlets.

https://theorielearn.github.io

Interactive elements

Two papers describing our finite-state-machine builder element have been accepted for publication. The first
paper1 describes our improvements to the automata Python library, which we use for grading and feedback
generation; the second paper2 describes the student and instructor/author interfaces, automatic
counterexample generation, partial credit algorithms, and

While we have deployed several new problems for CS 374, most of our development of question types and
interactive elements has been aimed at CS 225. For example, we have modified the automata editor into three
different interactive tree-builder elements; to be used for different types of data structure problems. In all
variants, the layout of the tree is updated automatically when users add or delete nodes; we found that
allowing students to move nodes around arbitrarily was more confusing than helpful.

● The most basic variant supports only labeling nodes with search values and adding and deleting leaves.
These limited operations are sufficient to support exercises about insertions and deletions in binary
search trees.

● A more complex variant also supports arbitrary reassignment of left and right child pointers, shown in
the figure to the right. This variant is useful for testing understanding of trees that maintain balance
through rotations, such as AVL trees and red-black trees.

● Finally, a third variant supports multiple search keys at each node, and splitting/merging nodes, which
are crucial for modeling B-trees.

We plan to continue developing this tool to support highlighting nodes and edges (for example, to highlight
search paths), performing rotations, and other higher-level operations. We also anticipate using variants of this
tool for questions not only about search trees, but also about heaps, Huffman codes, recursion trees, and parse
trees.

One of our most novel developments is our scaffolded writing tool, which allows students to construct English
sentences from a hidden context-free grammar.3 Students generate sentences one token at a time, using an
interface that closely resembles the auto-complete feature of several mobile messaging apps; as the student

3 Jason Xia and Craig Zilles. Using context-free grammars to scaffold and automate feedback in precise mathematical writing.
Proc. 54th SIGCSE, 479–485, 2023.

2 Eliot W. Robson, Samuel Ruggerio, and Jeff Erickson. FSM Builder: A tool for writing autograded finite automata questions.

To appear in Proc. 29th Annual ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE), 2024.

1 Caleb Evans and Eliot W. Robson. automata: A Python package for simulating and manipulating automata. J. Open Source
Software 8(90):5759, 2023.

https://doi.org/10.1145/3545945.3569728
https://jeffe.cs.illinois.edu/pubs/fsmbuilder.html
https://joss.theoj.org/papers/10.21105/joss.05759

enters their sentence, they are presented with a list of all possible next tokens. To design a problem for this
element, the instructor specifies a grammar that can generate both correct and incorrect answers—ideally
multiple correct answers and incorrect answers that cover common student mistakes—as well as grading code
to provide feedback and partial credit that reflects progress toward a correct solution. We currently use this
tool to support guided problems on dynamic programming, graph algorithms, and Np-hardness reductions.

One common complaint about the scaffolded-writing element is that the limited interface can be confusing,
especially when students come up with sentences that may be correct but do not match the question’s hidden
grammar. Another complaint is that fixing mistakes at the beginning of a sentence requires deleting and then
manually rechoosing all later tokens. To try to address these issues, we are developing a “top-down” variant
of the scaffolded writing tool, which allows students to generate sentences “breadth-first” instead of “depth-
first”; a snapshot of our new element is shown on the right. Students can expand or contract tokens
representing subexpressions in any order. We have deployed a prototype of this element in CS 225 to gather
informal student feedback to support further development.

Ongoing research

For the past four semesters, we have surveyed students in CS 374 about their experience working with both the
autograded PrairieLearn exercises and the traditional written homeworks. Our ASEE 2023 paper4 summarized
our initial evaluation of Fall 2023 survey results; as we hoped, the survey results revealed that students found
the guided problem sets more enjoyable and less stressful than written homeworks, and gave students more
confidence in their own mastery of the course material. The Spring 2023 and Fall 2023 results showed nearly
identical results; the Spring 2023 survey is ongoing.

Students reported that the guided problem sets helped them understand the process of solving problems,
helped them by serving as a link between lecture and the written homework and exams, and helped by serving
as an easier onboarding experience to problem solving. We are currently pursuing a deeper exploratory
analysis of our survey results, together with homework and exam scores and PrairieLearn usage data, to better
understand what effect our resources have on student learning. Our analysis has already revealed a few
encouraging patterns. For example, students with higher grades reported more that they understood the
process of solving problems, and students that engaged more with the guided problem sets (as measured by
the number of attempts submitted) had a positive increase from midterm to final in every grade category. We
are still investigating whether increased engagement is helpful to struggling students. We are hoping to submit
results of our analysis to SIGCSE 2025 in August. RAs Eliot Robson and Hongxuan Chen have been instrumental
in this ongoing data analysis.

We are also conducting more basic theoretical-computer-science education research, which will inform
what types of exercises we should develop in the future. There is remarkably little prior work in this area—
historically, almost all CS education research is focused on introductory courses—but there are signs of
increasing interest from the CS education community. Specifically, we are investigating barriers that students
face when learning to design graph algorithms. RA Hongxuan Chen conducted “think-aloud” interviews with 15
students, where the students solve a small number of graph algorithm design problems; Hongxuan and RA
Katherine Braught are currently coding and analyzing those interviews. We hope to submit our results to
SIGCSE 2025 in August.

4 Jeff Erickson, Jason Xia, Eliot Wong Robson, Tue Do, Aidan Glickman, Zhuofan Jia, Eric Jin, Jiwon Lee, Patrick Lin, Steven Pan,
Samuel Ruggerio, Tomoko Sakurayama, Andrew Yin, Yael Gertner, and Brad Solomon. Auto-graded scaffolding exercises for
theoretical computer science. Proc. ASEE 2023.

https://peer.asee.org/auto-graded-scaffolding-exercises-for-theoretical-computer-science
https://peer.asee.org/auto-graded-scaffolding-exercises-for-theoretical-computer-science

Impact and publicity

During the 2023-24 academic year alone, our resources have been used by over 1100 students in CS 374
(including the ECE-taught section of the course starting in Spring 2024), over 1700 students in CS 225, and
almost 1600 students in CS 173.

We maintain a public-face project web site at https://theorielearn.github.io, with pointers to our public practice
instance, research papers, SIIP proposals, and (eventually) our main public repository.

We participated in a well-attended “Spiffy PrairieLearn assessments” workshop at SIGCSE 2024, the flagship
conference in computer science education. We gave a demo of an exercise where students assemble a
pseudocode description of an NP-hardness reduction—transforming one graph into another—using Seth
Poulsen’s Proof Blocks element.5,6 If the student’s reduction is incorrect, the grading code automatically
generates a counterexample graph. The appearance of the counterexample drew audible gasps and applause
from the audience.

Resources that we developed for CS 374 are now being used at two other universities: Illinois PhD Seth Poulsen
is using them in his algorithms course at Utah State University, and Michael Schindler is using them in his
automata and formal language course at UC Irvine.

Goals for 2024–25

We have already deployed guided problem sets that cover all topics in CS 374, but for most of these topics, we
only have a few fully developed exercises. We plan to focus on building more exercises of the types we
already have, both to provide students with additional opportunities for practice (“working examples”) and to
give instructors more choice about which exercises to assign for credit. Before each exam in CS 374, the
instructors distribute an “exam fodder” document containing dozens of problems for each topic covered on
that exam, of similar scope and difficulty to actual exam questions, without solutions. (Indeed, many of the
fodder problems are taken directly from old exams; however, instructors generally create new problems for
each exam.) Over time, we would like to implement most of these hundreds of fodder problems as guided
problem sets.

We will continue to maintain close communication both with the staff for all relevant courses. Carl is teaching
CS 173 in Fall 2024 and CS 225 in Spring 2025; Brad is teaching CS 225 in Fall 2024 and CS 277 in Spring 2025.
Jeff is next scheduled to teach CS 374 in Fall 2025, but he is in close communication with next year’s instructors
Sariel Har-Peled (CS), Chandra Chekuri (CS), and Abhishek Umrawal (ECE). In particular, the departure of Ben
Cosman, the regular CS 173 instructor for several years, gives us an opportunity to significantly ramp up
development of new elements and exercises for CS 173. We will also continue working closely with the core
PrairieLearn team, both to promote broadly useful components up to the main code base, and to advocate
(and serve as guinea pigs) for major feature requests. We will also continue our outreach to instructors at
Illinois and elsewhere whose classes might benefit from our resources.

6 See https://www.proofblocks.org/.

5 Seth Poulsen, Mahesh Viswanathan, Geoffrey L. Herman, and Matthew West. Proof blocks: Autogradable scaffolding
activities for learning to write proofs. Preprint, August 2021, arXiv:2106.11032.

https://theorielearn.github.io
https://www.proofblocks.org/
https://arxiv.org/abs/2106.11032
https://arxiv.org/abs/2106.11032
https://arxiv.org/abs/2106.11032

One major goal in the service of greater adoption is to shift our target development platform to a public
Github repository, with code explicitly released under an MIT License and question text explicitly released
under a Creative Commons Attributions (CC-BY) license. Instructors could choose to either adopt our resources
verbatim via PrairieLearn’s question-sharing feature, or to copy our resources into their own repositories and
modify them for their own purposes. We also plan to develop software tools to help automate copying
questions between repositories. In the longer run, we need to move to a development model where
“TheorieLearn” provides software infrastructure, but individual courses are responsible for their own
assessments.

We plan to identify and train a replacement for Eliot Robson, who has been our excellent technical manager
for years. Eliot is on track to complete his PhD in the near future, possibly as soon as summer 2025; fortunately
for us, he has committed to continuing his management role until he graduates. Eliot is funded by a fellowship
next semester; the ideal budget optimistically includes an RAship for his prospective successor.

Finally, we plan to continue to pursue related computer science education research. Our current graph-
algorithms study focuses on only one step in the design pipeline—correctly modeling the input data as a graph.
We are tentatively planning a followup study focusing on another equally important and difficult step, namely
determining the right question to ask about that graph—Is this a question about reachability, or shortest paths,
or cycle detection, or something else? The ideal budget includes an RAship for Hongxuan to continue his work
in this direction. Independently from this SIIP project, Jeff and Yael (along with Geoffrey Herman, Seth Poulsen,
and Micheal Schinder) plan to join a multi-university NSF proposal, led by Diana Franklin at the University of
Chicago, to study theoretical computer science education. The precise scope of that project is still under
discussion, but we are optimistic that both projects will be strengthened by our collaboration.

2023–24 Spending

In the 2023-24 academic year, we received $73,595.00 in SIIP funding, plus a promise of matching funds from
the Department of Computer Science. We also still have a balance of $4,125.80 from the initial SIIP startup
grant.

● Undergraduate developers: five in Fall 2023, seven in Spring 2024, and two in Summer 2024
○ We budgeted for 8 undergraduates working 10 hours per week, but we had fewer developers,

and most developers worked significantly less than 10 hours per week, especially in the
spring..

● Graduate RAs:
○ In the proposed 2022-23 budget, we significantly overestimated the cost of RAs. The actual

cost charged to the SIIP account was $2930 per month per RA; our proposed 2023-24 budget
uses this estimated rate.

○ Eliot Robson (Fall 2023 and Spring 2024) — technical management, CS education research,
research data analysis

○ Hongxuan Chen (Fall 2023 and Summer 2024) — CS education research, research data
analysis

○ Katherine Braught (Summer 2024) — research data analysis

Our only other expense this academic year is Eliot Robson’s trip to ITiCSE this summer. All past expenses
were drawn from SIIP funding, except for one Fall 2023 RA, which was paid by the CS department.

The following table outlines our 2023–24 expenses, extrapolated through Summer 2024.

2023–24 SIIP Funding
(including startup carryover)

$77,720

Expenses by semester Fall Spring* Summer* Comments

Graduate Assistants $11,720 $11,720 $17,580 1 Fall + 1 Spr + 2 Summer (3 months)

Undergrad Hourlies $5,274 $5,414 $3,000 5 Fall + 7 Spr + 2 Summer (12hr/wk x 13 wk)

Travel $3,000 One student to ITiCSE

Totals $16,994 $17,134 $23,580

Total Expenses $57,708

Remaining Balance $20,012

Table 1. 2023–2024 expenses from SIIP funds (*projected)

2023–24 Budget Request

We are proposing a smaller budget for 2023–24, in part in anticipation of a smaller overall budget for the SIIP
program, in part to reduce the number of undergraduate developers from eight to five. Managing a team of
eight developers has proved more difficult than expected; average productivity was significantly lower in the
spring than in the fall, perhaps because each individual developer received less attention from Eliot and the
faculty. We believe we can accomplish the same goals with a smaller, more focused team. Four of our existing
developers have indicated interest in continuing next semester, and we have identified a fifth undergraduate
who is highly qualified and eager to join the team.

The Department of Computer Science has agreed to fund up to 11 months of 50% RAship for the 2024–25
academic year, conditioned on departmental support not exceeding SIIP support.

As recommended by our EIF Mariana Silva, we are providing two budget requests for SIIP:

● Our ideal budget request for $50,318 covers two RAships (including one funded by the department),
five undergraduate developers, and a small amount of conference travel.

● Our minimal budget request for $20,588 covers one RAship (one semester covered by SIIP and one
semester and summer covered by the department), four undergraduate developers, and no travel.
Under a minimal budget, we would likely prioritize transitioning to a public repository and limit our
recruiting efforts for Eliot’s successor to first-year computer science PhD students (who are all funded
by departmental fellowships).

Salaries / Wages Proposed Budget Comments

Graduate Assistants $64,460 2 50% 11-month RAships, at CS 2022-23 post-qual rate
($2930/mo), no overhead or tuition

Undergrad Hourlies $36,100 5 undergrads × $19/hour (2023–24 CS rate for senior URAs) ×
10 hours/week × 38 weeks (8/23/24–5/12/25)

Travel $2,000 one student to SIGCSE or ASEE

Total Budget $102,560

CS Dept commitment $32,230 1 50% 11-month RAship

Carryover balance $20,012

Requested SIIP funds $50,318

Table 2. Ideal 2023–24 budget request

Salaries / Wages Proposed Budget Comments

Graduate Assistants $32,230 1 50% 11-month RAship, at CS 2022-23 post-qual rate
($2930/mo), no overhead or tuition

Undergrad Hourlies $28,880 4 undergrads × $19/hour (2023–24 CS rate for senior URAs) ×
10 hours/week × 38 weeks (8/23/24–5/12/25)

Total Budget $61,110

CS Dept commitment $20,510 1 50% RAship for spring (4 months) and summer (3 months)

Carryover balance $20,012

Request SIIP funds $20,588

Table 3. Minimal 2023–24 budget request

