
 TheorieLearn:
 Autograded Resources for Theoretical Computer Science

 SIIP Implementation and Exploration Proposal

 Jeff Erickson, Carl Evans, Yael Gertner, Brad Solomon
 Department of Computer Science

 Abstract

 We propose to develop resources on the PrairieLearn platform to support the teaching of algorithms, data
 structures, and other theoretical aspects of computer science, at several different levels of the computer
 science curriculum. The proposed project extends an existing effort to develop scaffolding exercises for
 CS 374 and expands this effort to include both scaffolding and assessments in CS 173, CS 225, CS 277, CS
 401, CS 403, and possibly other related classes at Illinois and elsewhere. We anticipate the development of
 new elements, new question types, and other software infrastructure that will be useful for a much larger
 set of PrairieLearn users. We also propose to use our development effort to support and motivate research
 in theoretical computer science education.

 Background

 Pedagogy / Philosophy

 Algorithms classes are traditionally taught by showing students several classical algorithms—usually designed
 using a common technique—proving those algorithms correct, analyzing their running times, and then asking
 students to design and analyze new algorithms using similar techniques. Unfortunately, this approach is
 inconsistent with the learning goals of these classes, because it does not expose the process of designing new
 algorithms. Students in these traditional classes see only a polished fait accompli, with no indication of where
 the algorithm came from; they are expected to develop a skill—algorithm design—which they are never actually
 taught.

 A common complaint of students in many classes is a lack of “worked examples” to study from, especially
 before exams. In fact, in a typical semester, CS 374 provides complete solutions and grading rubrics for over
 100 problems from labs, homeworks, and previous exams, including at least one solved problem on every
 homework handout. (We also provide several dozen study problems for each exam, but without solutions.)
 Nevertheless, the students’ complaints have merit, because solutions are only the finished product .

 Almost all coursework in CS 374 consists of open-ended algorithm design and proof questions, most of which
 require about half a page (on exams) to a page (in homeworks) of semi-structured English to answer. Typical
 examples include the following:

 ● Describe a regular expression for the set of all binary strings with an even number of 0 s and an odd
 number of 1 s.

 ● Prove that the language { 0 n 1 2 n | n ≥0} is not regular.
 ● Describe and analyze an algorithm to determine whether any number appears more than n /4 times in

 a given array of n numbers.

 ● Describe and analyze an algorithm to find the longest common subsequence of three given strings.
 ● Describe an algorithm to find the shortest walk in a given graph G with colored edges, from vertex s to

 vertex t , in which no three consecutive edges have the same color.
 ● Prove that it is NP-hard to determine the maximum number of scoops of ice cream that can be

 balanced on a single cone with no “yucky” pairs of flavors touching each other.

 Most problems have multiple correct solutions; in some cases, using significantly different techniques. The
 freeform nature of these questions is a significant strength of the course, but it does come at a cost. Despite
 promising work using natural language processing to grade simpler narrative questions, 1 automatically grading
 narrative work is impossible; almost all work in CS 374 must be graded by human beings—in practice, graduate
 TAs and undergraduate CAs. Ensuring that TAs and CAs provide timely and consistent feedback is one of the
 most significant challenges of teaching 374, and this challenge has grown as enrollments have increased.

 These freeform narrative problems are the heart of the course, and we have no plans to replace them. But
 students significantly benefit from more structured scaffolding activities that focus on components of the
 problem-solving process, that provide targeted feedback, and that can help students gain confidence in their
 own problem-solving abilities. To that end, for the last two years Jeff has been managing a team of
 undergraduates to develop PrairieLearn resources, first to support CS 374, and more recently to support
 related computer science classes, especially CS 225. We propose to continue this long-term effort to
 develop PrairieLearn resources to support classes across the CS curriculum that teach theoretical
 computer science topics. Our current focus is on CS 225, CS 277, CS 374, and CS 401/403, but in the long run
 we anticipate collaborating with instructors in other classes that teach related material, both at Illinois and
 elsewhere.

 History

 Since August 2021 Jeff has managed and funded a team of students to develop PrairieLearn resources that
 guide CS 374 students through the design/solution process for many different types of problems. The CS 374
 PrairieLearn development effort was originally spearheaded by undergraduate Jason Xia in Spring 2021, with
 the encouragement of instructors Chandra Chekuri and Patrick Lin; Jason continued to play a significant
 leadership role on the team until his graduation in 2022. 2 PhD student Eliot Robson joined the team in Fall 2021
 as a liaison TA from CS 374 and quickly became the project’s technical manager. Since Spring 2021, a total of
 thirteen undergraduate developers have been part of the team for at least one semester.

 Independently, Yael Gertner was already developing PrairieLearn resources for the theory courses CS 401 and
 403 that are part of the department’s new iCAN certificate program. The iCAN program and its component
 courses are designed with the goal of broadening participation in CS and are aimed at college graduates who
 wish to enter the computing field but have non-computing backgrounds; the needs and goals of iCAN courses
 are different from classes taken by our undergraduate majors. Immediate feedback and extra practice with
 solutions are especially important for these courses.

 More recently, thanks to SIIP startup funding, we have expanded our development efforts to CS 225, a
 sophomore-level data structures class, which is a prerequisite for CS 374, and which recently underwent a
 long-planned revision. Historically, CS 225 included a significant amount of theoretical content—in particular,
 induction proofs, running-time recurrences, and algorithm analysis—reinforcing material taught in the

 2 Unfortunately for us, Jason graduated in May 2022 and is now working at Duolingo.

 1 Max Fowler, Binglin Chen, Sushmita Azad, Matthew West, and Craig Zilles. Autograding "Explain in Plain English" questions
 using NLP . Proc. 52nd SIGCSE , 1163–1169, 2021.

https://dl.acm.org/doi/10.1145/3408877.3432539
https://dl.acm.org/doi/10.1145/3408877.3432539

 prerequisite discrete math course CS 173. Over roughly the last decade, as enrollment in 225 grew from 800
 students per year to over 1500, all manually grading was replaced with auto-grading, and reinforcement of
 theoretical content all but disappeared. In Fall 2021, the introductory programming sequence was updated to
 include a new programming studio course CS 126, which absorbed several weeks of C++ instruction from CS
 225, leaving room to reintroduce more theory. Primarily in response to this change (and thanks to support from
 SIIP), two of the regular instructors for CS 225, Carl Evans and Brad Solomon, joined the development effort in
 Fall 2022.

 Design Goals

 Most of our exercises for CS 374 are organized into ”guided problem sets”, each containing a series of exercises
 related to a single problem or skill. Guided problem sets are not intended to replace written homeworks or
 exams, but rather to replicate the kind of interactive leading questions that a student might be asked in a
 discussion/lab section or in office hours.

 The design goals for these guided problem sets reflect existing goals for other components of the course,
 including lectures, labs, and grading rubrics. Most importantly, for each type of problem, guided problem sets
 should reinforce the solution process recommended for that type of problem in other parts of the course. Said
 differently, we want to provide students with working examples, not just more worked examples. Guided
 problem sets should also support multiple correct solutions, recognize and reward progress toward any correct
 solution, explicitly detect common mistakes, award partial credit using the same rubrics as manually graded
 homeworks and exams, and provide helpful narrative feedback.

 Whenever possible, we avoid questions that invite blind exploration, especially multiple choice questions; we
 want solving the problems to be a learning process, not a process of elimination. We also aim to provide partial
 credit that rewards progress and targeted feedback that guides students toward correct solutions, instead of
 merely grading questions as correct or incorrect.

 Finally, as a general rule, we also avoid free-form programming questions, in part because it is difficult to
 automatically grade code on any other basis than correctness on a finite set of test inputs, and we want to
 recognize and reward progress toward correct solutions. Turning well-designed algorithms into practically
 efficient code is an important skill, but that skill is not the focus of CS 374. We want students to focus instead on
 the structure, correctness, and efficiency of algorithms without worrying about (more strongly, while staying
 deliberately agnostic about) low-level implementation details or specific language syntax.

 Our design goals for CS 225 are quite different. Here we not only require formative exercises that help students
 develop mastery and confidence in the theoretical course material, we also need summative assessments.
 Experience strongly suggests that students will learn material that has no effect on the final course grade, and
 even students who engage with more theoretical topics out of intrinsic interest benefit from feedback on their
 efforts. On the other hand, manually grading 1200 freeform induction proofs or data structure design problems
 is completely infeasible, especially on a short enough schedule for the feedback to be useful, and especially
 when almost all the TAs with theory expertise are busy in CS 374. We aim to build exercises that reward
 understanding, not just memorization; that offer suitable partial credit and targeted feedback; that do not
 succumb to blind exploration; and that are parametrized to inhibit cheating. Building exercises that meet these
 constraints is a significant challenge, with enormous impact on the rest of the course; in a sense, our success
 determines what theory can be taught in CS 225.

 Progress in 2022–23

 Thanks to support from the SIIP program as a startup project, we made progress on several different fronts
 during the 2022–23 academic year, including several new guided problem sets in CS 374 and CS 401/403, a
 small number of assessments (offered as practice exercises) in CS 225, and several new interactive PrairieLearn
 elements. We have contributed exercises to other classes at Illinois that are not formal participants in our
 project; elements, bug fixes, and feature requests to the main PrairieLearn codebase, and significant updates to
 other open-source projects. In the 2022-23 academic year alone, our resources have been used by almost 2000
 Illinois students.

 Big-O Input and Multistage Exercises

 As a minor but still important contribution, we developed the big-o-input element, which evaluates expressions
 using asymptotic (“Big O”) notation, most commonly in reporting the running times of algorithms. Our element
 symbolically compares student input to a reference solution using the SymPy Python library, and then provides
 feedback and partial credit targeted to common errors, such as upper bounds that are too small and therefore
 incorrect, upper bounds that are correct but loose, and expressions with unnecessary constant factors or
 lower-order terms. The element properly supports O(), Θ(), Ω(), o(), and ω() expressions, providing necessary
 feedback and partial credit for each expression type. The question writer only has to describe a reference
 solution; the element automatically handles all grading and feedback. Our element has been incorporated into
 the main PrairieLearn codebase, and it is already being used by at least five different CS courses at Illinois.

 We are also developing templates to support multistage exercises, and we have already deployed a few
 prototype examples in CS 225. In these examples, the exercise presents a description of a data structure and
 asks students to perform a series of (randomly generated) update operations on that data structure.
 Depending on the question configuration, each operation is revealed only after the student has correctly
 answered the previous stage (“homework mode”), or after a fixed number of attempts (“exam mode”). Our
 current prototypes rely heavily on custom Python code, but we plan to provide a lightweight element that
 would allow authors to create multistage exercises with this simple narrative structure by specifying (or
 generating) a series of questions and answers.

 Figure 1 . Multistage data structure exercises.

 Order/Proof Blocks

 One of the most natural PrairieLearn tools for theory classes is the Order Blocks (pl-order-block) element
 developed by Seth Poulson and others at Illinois. 3 , 4 , 5 In previous years, we developed Order Blocks exercises for
 CS 374 that as students learn to assemble basic induction proofs, that ask students to sort functions by
 asymptotic (“big-Oh”) growth rates, and that ask students to assemble pseudocode descriptions of NP-hardness
 reductions (which the grading code translates into Python). More recently, we have used Order Blocks to ask
 students to develop correctness proofs of greedy algorithms, and to describe correct evaluation orders for
 multidimensional dynamic programming algorithms. According to Seth Poulsen, 6 CS 374 is the first course
 anywhere to use Proof Blocks for any topic more advanced than introductory proofs.

 Figure 2 . Pseudocode blocks.

 Scaffolded Writing (SIGCSE 2023)

 Over a year ago we developed a scaffolded writing element that allows students to generate sentences from a
 hidden context-free grammar, one token at a time. The interface closely resembles the auto-complete feature
 of several mobile messaging apps; as the student enters their sentence, they are presented with a list of all
 possible next tokens. To design a problem for this element, the instructor specifies a grammar that can
 generate both correct and incorrect answers—ideally multiple correct answers and incorrect answers that
 cover common student mistakes—as well as grading code to provide feedback and partial credit that reflects
 progress toward a correct solution.

 We first deployed this tool to support the design of dynamic programming algorithms. An important step in the
 design process of these algorithms is clearly specifying the underlying recursive function that the algorithm will
 evaluate. The underlying grammars generate multiple correct solutions (for example, specifying subproblems
 by either prefixes or suffixes of the input array), specifications that lead to correct but slower algorithms,
 several common errors (for example, not describing explicitly how the output value depends on input
 parameters), and a few stylistic errors (for example, naming the recursive function “DP”). Feedback and partial

 6 Personal communication

 5 See https://www.proofblocks.org/ .

 4 Seth Poulsen, Mahesh Viswanathan, Geoffrey L. Herman, and Matthew West. Evaluating proof blocks as exam questions .
 Proc. ICER 2021 , 157–168, 2021. Reprinted in ACM Inroads 13(1): 41–51, 2022.

 3 Seth Poulsen, Mahesh Viswanathan, Geoffrey L. Herman, and Matthew West. Proof blocks: Autogradable scaffolding
 activities for learning to write proofs . Preprint, August 2021, arXiv: 2106.11032 .

https://www.proofblocks.org/
https://dl.acm.org/doi/10.1145/3446871.3469741
https://dl.acm.org/doi/10.1145/3514213
https://arxiv.org/abs/2106.11032
https://arxiv.org/abs/2106.11032
https://arxiv.org/abs/2106.11032

 credit follow the same grading rubric used for dynamic programming problems on written homeworks and
 exams. A detailed description of this tool was published at SIGCSE 2023. 7

 More recently, we have used the same scaffolded writing tool for graph transformation problems, which arise
 both in the design of efficient graph algorithms and in NP-hardness proofs. These problems give students
 practice writing “landmark sentences” that describe the precise relationship between the data given to the
 transformation algorithm and the graph output by the transformation algorithm. Behind the scenes, we have
 implemented constraint-based graders that makes it easier for authors to write new constrained writing
 problems, at least of the same types. We have deployed these exercises in both CS 225 and CS 374.

 Figure 3 . Examples of scaffolded writing, one from CS 225 and one from CS 374.

 Automata and Binary Tree Editors

 One of the skills we teach early in our algorithms class is designing and drawing deterministic and
 non-deterministic automata. Online tools for drawing and simulating automata (also known as finite state
 machines or FSMs), such as JFLAP 8 and Automata Tutor, 9 have existed for many years. While these tools are
 capable, we could not integrate them into PrairieLearn. Instead, we adapted a lightweight open-source
 browser-based FSM editor 10 for the front-end interface and an open-source automata Python library 11 for the
 back-end grading code. We have extended the automata library to meet our needs, and those extensions have
 since been incorporated back into the original open-source project.

 Our automata editor provides complete freedom to draw, label, and edit states and transitions, including the
 start state and accepting states. For deterministic automata, students can declare a hidden dump/trash state to
 simplify their design. When the student submits, the grading code compares the language accepted by the
 submitted FSM to the target language, and automatically provides counterexamples if the submitted machine is
 incorrect. Question authors only need to specify the desired type of automaton (deterministic or
 nondeterministic), a maximum state limit, the input alphabet, and a formal description of one correct
 automaton. We emphasize that scores and feedback are based on the language accepted by the student’s
 submission; every correct FSM is graded as such.

 More recently we have modified the automata editor into an editor for binary search trees. Our binary tree
 editor currently only supports moving nodes, labeling nodes, and adding and deleting leaves. These limited
 operations are already enough to support exercises about insertions and deletions in binary search trees,
 which we have already deployed as practice exercises in CS 225. We plan to continue developing this tool to

 11 Caleb Evans. Automata. Github repository, 2022. https://github.com/caleb531/automata

 10 Evan Wallace. Finite state machine designer. Github repository, 2015. https://github.com/evanw/fsm

 9 Loris D’Antoni, Martin Helfrich, Jan Kretinsky, Emanuel Ramneantu, and Maximilian Weininger. Automata Tutor v3 . Proc. 32nd
 CAV , 3–14, 2020. LNCS 12225, Springer.

 8 Susan H. Rodger and Thomas W. Finley, JFLAP: An Interactive Formal Languages and Automata Package . Jones & Bartlett, 2006.

 7 Jason Xia and Craig Zilles. Using context-free grammars to scaffold and automate feedback in precise mathematical writing .
 Proc. 54th SIGCSE , 479–485, 2023.

https://github.com/caleb531/automata
https://github.com/evanw/fsm
https://doi.org/10.1145/3545945.3569728

 support highlighting nodes and edges (for example, to highlight search paths) and performing rotations (to
 support questions about AVL and red-black trees, for example). We also anticipate using this tool for questions
 not only about binary search trees, but also about binary heaps, Huffman codes, and recursion trees.

 Student Survey (ASEE 2023)

 We designed our auto-graded scaffolding exercises to support students in learning the course objectives. So
 that students would be motivated to engage with these exercises throughout the course, we designed them to
 be easy and enjoyable to use. We also focused on making sure the content of these exercises closely matched
 the required content of the class, so students felt that these exercises are valuable to improving their
 competency in the class. All three of these factors— ease of use, enjoyability of exercises, and a clear
 connection to increased competency—are correlated with improving motivation.

 To evaluate the success of our new exercises, we directly surveyed students in the Fall 2022 offering of CS 374
 about their experience working with both the new exercises and the traditional written homeworks. We
 administered the survey at the last week of class, after they had ample engagement with the exercises. Our
 survey asked the students to express their agreement on a standard 5-point Likert scale, first to 14 statements
 about the PrairieLearn guided problem sets, and then to the same 14 statements about the traditional written
 homeworks.

 Figure 4 on the following page, which is taken from our upcoming ASEE 2023 paper, 12 summarizes the 260
 responses we received. For each statement, responses for PrairieLearn guided problem sets are shown
 immediately above responses for written homework. As we hoped, the survey results revealed that students
 found the guided problem sets more enjoyable and less stressful than written homeworks, and gave students
 more confidence in their own mastery of the course material.

 We are surveying CS 374 students again this semester (Spring 2023), and we anticipate repeating the survey in
 Fall 2023 and Spring 2024, so that we have responses for sections taught by all four regular instructors. We are
 also collecting grade information and PrairieLearn data for students who have consented to have their
 information used for research purposes, and we are planning a more detailed analysis of this combined data
 for future publication.

 Goals for 2023–24

 Our efforts over the next academic year will focus primarily on CS 225 and CS 374. For CS 225, our main goal is
 to design and deploy new types of assessment exercises. As mentioned earlier in the proposal, there is a
 tension between what we would like to teach (in particular, to better prepare students for CS 374) and what we
 can practically assess on PrairieLearn. We are optimistic about potential applications of our prototype
 binary-tree builder to problems involving about binary search trees, AVL trees and other balanced binary
 search trees, and Huffman codes—all topics that are already covered from a more practical viewpoint—as well
 as more purely theoretical topics like recursion trees. In the long run we plan to generalize the element further
 to handle arbitrary graphs , opening up many more possibilities for new assessments. More broadly, we expect
 close discussion between Jeff (channeling the other tenure-track theory faculty) and Carl and Brad (regular
 instructors for CS 225) to inform the evolution of both CS 225 and CS 374, beyond their uses of PrairieLearn.

 12 Jeff Erickson, Jason Xia, Eliot Wong Robson, Tue Do, Aidan Glickman, Zhuofan Jia, Eric Jin, Jiwon Lee, Patrick Lin, Steven Pan,
 Samuel Ruggerio, Tomoko Sakurayama, Andrew Yin, Yael Gertner, and Brad Solomon. Auto-graded scaffolding exercises for
 theoretical computer science. To appear in Proc. ASEE 2023.

 Figure 4 . Summary of Fall 2022 responses to our survey

 We have already deployed guided problem sets that cover all topics in CS 374, but for most of these topics, we
 only have a few fully developed exercises. We plan to focus on building more exercises of the types we already
 have, both to provide students with additional opportunities for practice (“ working examples”) and to give
 instructors more choice about which exercises to assign for credit. Before each exam in CS 374, the instructors
 distribute an “exam fodder” document containing dozens of problems for each topic covered on that exam, of
 similar scope and difficulty to actual exam questions, without solutions. (Indeed, many of the fodder problems
 are taken directly from old exams; however, instructors generally create new problems for each exam.) Over
 time, we would like to implement most of these hundreds of fodder problems as guided problem sets.

 We will continue to discuss future development specifically for CS 401/403 and CS 277. CS 401/403 already uses
 several guided problem sets taken directly from 374, together with exercises developed independently by Yael
 Gertner. CS 277 has not adopted any PrairieLearn resources, in part because the course and its intended
 audience are still very new; the first freshmen were admitted to the X+Data Science majors only this year, for
 Fall 2023 admission. We do not expect to deploy significant new resources specifically for those classes during
 the 2023–24 academic year. The team feels that we need more time to understand how to adapt the materials
 to the needs of students in these classes.

 We are planning for more systematic assessments of our resources. A major design goal for our assessments in
 CS 225 is to better prepare students for CS 374. Instead of waiting for a cohort of students to work through
 both classes, we are tentatively planning to use some of the 225 assessments as intake quizzes in the Fall 2023

 offering of CS 374. At least initially, we will give anyone who completes the intake quizzes full credit—after all,
 we are assessing the assessments more than we are assessing the students—although we will still give the
 students feedback and collect partial credit scores.

 We will continue to maintain close communication both with the staff for all relevant courses. Jeff is teaching CS
 374 in Fall 2023, Brad is teaching CS 225 in Fall 2023 and Spring 2024; Yael is continuing to teach CS 401 and
 403; and the CS 374 instructor for Spring 2024, Timothy Chan, has already agreed to continue using our
 resources. We will also continue working closely with the core PrairieLearn team, both to promote broadly
 useful components up to the main code base, and to advocate (and serve as guinea pigs) for major feature
 requests (such as parameterized questions and question/element sharing).

 Ultimately, we want the resources we develop to be available to as many people as possible, with as little
 friction as possible. We plan to broaden communication with other classes at Illinois and elsewhere. Although
 our exercises are tailored to specific audiences and learning, we believe that both the pedagogical architecture
 of guided problem sets and the software infrastructure that we are building is applicable much more broadly.
 Our automata builder and big-o-input element have already been adopted by CS 173 (discrete math); we
 also see potential applications of our resources in CS 357 (numerical methods), CS 361 (probability and
 statistics), and CS 421 (programming languages and compilers), all of which already use PrairieLearn. We have
 also had a few preliminary conversations with other instructors at Illinois (Ben Cosman for CS 173) and at other
 universities (Cinda Heeren at UBC, Seth Poulsen soon to join Utah State) which we hope to develop into
 stronger collaborations.

 Finally, we plan to use our development effort as a springboard for more computer science education research.
 For example, we have already deployed a survey asking students about their interaction with our PrairieLearn
 resources in CS 374. A majority of students who have responded to the survey reported greater motivation
 from the PrairieLearn guided problem sets than from traditional written homework. We plan to further explore
 the data to identify reasons for why certain students do not experience increased motivation and if there are
 ways to further improve the tool to make it more engaging to all students.

 As another example, we hypothesize that students who engage with our guided problem sets are better
 prepared to design similar problems in homeworks and exams. We plan to test this hypothesis with specific
 exercises, initially by correlating the number of attempts to completion with exam scores for similar problems.
 We plan to follow this up with interviews where we ask students to “think aloud“ as they solve these problems.
 This will allow us to understand common student mistakes, identify situations where students succeed only
 after multiple attempts, and help us add feedback that might hint at a path for success. Other researchers have
 published similar studies about student misconceptions of dynamic programming, 13 , 14 but so far without
 actionable outcomes.

 Finally, Jeff and Yael (along with Ben Cosman, Geoffrey Herman, and Seth Poulsen) are in very early discussions
 to join a $2 million multi-university NSF proposal, led by Diana Franklin at the University of Chicago, to study
 theoretical computer science education. The precise scope of that project is still under discussion, but we are
 optimistic that both projects will be strengthened by our collaboration.

 14 Michael Shindler, Natalia Pinpin, Mia Markovic, Frederick Reiber, Jee Hoon Kim, Giles Pierre Nunez Carlos, Mine Dogucu,
 Mark Hong, Michael Luu, Brian Anderson, Aaron Cote, Matthew Ferland, Palak Jain, Tyler LaBonte, Leena Mathur, Ryan
 Moreno, and Ryan Sakuma. Student misconceptions of dynamic programming: A replication study . Computer Science
 Education 32(3):288–312, 2022.

 13 Shamama Zehra, Aishwarya Ramanathan, Larry Yueli Zhang, and Daniel Zingaro. Student misconceptions of dynamic
 programming . Proc. 49th SIGCSE , 556–561, 2018.

http://doi.org/10.1080/08993408.2022.2079865
http://doi.org/10.1145/3159450.3159528
http://doi.org/10.1145/3159450.3159528

 Organization and Budget

 The team will include up to eight undergraduate hourly researchers and two graduate research assistantships.
 This is larger than the team has been during the startup phase;this expansion is justified by the transition from
 planning to active development in CS 225, increasing opportunities to interact with other classes and
 instructors at Illinois and elsewhere, and an increased focus on computer science education research.

 Undergraduates will author new exercises, prototype new types of exercises, develop new interactive elements,
 and participate in computer science education research. By default, new undergraduate team members will
 focus primarily on writing exercises that follow existing structures, under the guidance of more experienced
 developers, but we expect their responsibilities to broaden as they become more familiar with the existing
 codebase and the project’s pedagogical goals. Several past and current team members have expressed interest
 in continuing on the project. To attract new team members, we will advertise and collect applications for
 undergraduate researchers through the Computer Science Department’s undergraduate-hiring portal. Past
 experience suggests that we will attract a large pool of qualified applicants.

 Graduate research assistants will be technical managers for the software development effort and actively
 participate in CS education research. CS theory PhD student Eliot Robson (advised by Sariel Har-Peled) has
 already been working as a technical manager for the project for over a year, strictly on a volunteer basis; his
 leadership and contributions have been crucial for the success of the project so far. We anticipate Eliot’s
 continued leadership in this role. CS education PhD student Hongxuan Chen (advised by Geoffrey Herman) has
 also expressed interest in joining the project.

 In addition to these paid positions, we may include additional students who are interested in independent
 study or senior-thesis credit.

 As we have for the last two semesters, the team will meet two or three times each week during the fall and
 spring semesters: once with all faculty participants (primarily to report technical progress and discuss strategic
 and administrative issues), and at least once with student developers (primarily to discuss technical issues).
 Visitors are welcome to attend any of these meetings. In addition to weekly meetings, the team will
 communicate asynchronously through Slack and through Github issue tracking and pull requests. In particular,
 student developers review each other’s code before changes to the code base are accepted.

 The only item in our budget other than student wages is support for student travel to two domestic
 conferences (for example, two students to SIGCSE, or one student to SIGCSE and another to ASEE).

 Our budget is outlined in the table on the follopwing page. The Department of Computer Science has agreed
 to match funding from the SIIP program. Accordingly, all budget items are evenly split between the two
 funding sources.

 About the Target Classes

 CS 225 (“Data Structures”) is a sophomore-level course covering elementary data structures and algorithms and
 their implementations. This course is required for all computer science and computer engineering majors,
 computer science minors, and transfer applications into computer science and computer engineering. The
 course has a steady-state enrollment of about 1200 students every fall semester and 600 students every spring.

 Salaries / Wages Proposed Budget Dept. Match Comments

 Graduate Assistants $42,715 $42,715 2 RAs, each 11 months at 50%, at estimated
 CS 2023-24 post-prelim RA rate, no
 overhead or tuition

 Undergrad Hourlies $28,880 $28,880 8 undergrads × $19/hour (2022–23 CS rate
 for senior URAs) × 10 hours/week × 38
 weeks (8/23/23–5/12/24)

 Travel $2,000 $2,000 one student to SIGCSE or ASEE

 Totals $73,595 $73,595

 Total Project Budget $147,190

 Table 1. Proposed b udget

 CS 277 (“Algorithms and Data Structures for Data Science”) is an introduction to elementary concepts in
 algorithms and classical data structures, with a focus on their data science applications. This is a new course
 designed for the new “Data Science + X” degree programs; so far there have been only two pilot offerings, with
 30 students in the second offering in Spring 2023. The first Data Science + X students will matriculate in Fall
 2023. Based on existing enrollments in the prerequisite class Stat 207, we expect steady-state enrollment in CS
 277 to grow to about 100 students per offering by 2024.

 CS 374 (”Introduction to Algorithms and Models of Computation”) is a junior-level theoretical computer science
 course, which covers a combination of algorithm design and analysis, automata and formal language theory,
 and complexity theory. Coursework consists almost entirely of open-ended design and analysis problems. CS
 374 is required for all computer science (including CS+X) and computer engineering majors. The course is split
 into two independent sections, taught by CS and ECE instructors, with steady-state enrollments of 450 and 200
 students per semester, respectively.

 CS 401 (“Accelerated Fundamentals of Algorithms I”) and CS 403 (“Accelerated Fundamentals of Algorithms II”)
 are part of our new ICAN (Illinois Computing Accelerator for Non-Specialists) graduate certificate program,
 which is aimed at students with bachelor’s degrees in fields other than computer science. So far each of these
 classes has been taught three times, most recently to a cohort of about 30 students; steady state enrollment is
 expected to grow to about 40 students per year in each class.

 About the Project Team

 All five team members are faculty members in the Department of Computer Science.

 Jeff Erickson is a full (tenure-track) professor. He is one of the architects and a regular instructor of both CS
 374 and the followup algorithms course CS 473. Jeff served as an AE3 Engineering Innovation Fellow from 2017
 to 2021; this is his first SIIP team. His research interests are slowly morphing from algorithms to computer
 science education.

 Carl Evans is a teaching assistant professor and one of the regular instructors of CS 225. Carl has also taught
 CS 126 (software design studio), CS 173 (discrete structures), and CS 341 (system programming; he also served

https://jeffe.cs.illinois.edu/
https://cs.illinois.edu/about/people/faculty/gcevans

 as a TA for several CS courses as a PhD student at Illinois. Carl has also participated in coordinating the
 development of CS 128, which was supported by a SIIP grant.

 Yael Gertner is a teaching assistant professor. She developed and regularly teaches several courses in the iCAN
 program, including CS 401 and 403, and she has been actively developing PrairieLearn resources to support
 these classes. She has also taught CS 173 (discrete structures). Her research interests are in computer science
 education in the areas of broadening participation in computing and designing interventions to increase
 students’ learning outcomes. She is also part of the ongoing SIIP project “Identifying Student Profiles to
 Facilitate Learning Outcomes in Introductory Problem-Solving Classes”.

 Brad Solomon is a teaching assistant professor and one of the regular instructors of CS 225. Brad is the course
 director and regular instructor for our new course CS 277 (algorithms and data structures for data science); he
 has also taught CS 173 (discrete structures). His research focuses on developing new algorithms and data
 structures for the efficient storage, search, and analysis of genomic sequencing data. Brad has not been a
 member of any other SIIP team.

http://ygertner.web.illinois.edu/index.html
https://cs.illinois.edu/about/people/department-faculty/bradsol

